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Abstract
Several results of black holes thermodynamics can be considered as firmly
founded and formulated in a very general manner. From this starting point,
we analyse in which way these results may improve our understanding in the
thermodynamics of ordinary systems for which a pre-relativistic description
is sufficient. First, we introduce a spacetime model and an entropy related
to a local definition of the order in this spacetime. We show that such an
approach leads to the traditional thermodynamics provided an equilibrium
condition is assumed. From this condition a relation time/temperature is
introduced. We show that such a relation extensively used in the black hole
theory has a very general and physical meaning here. Our dynamical approach
of thermodynamic equilibrium allows us to establish a relation between action
and entropy identical to the one existing in the case of black holes. Since
this relation exists for systems with very different underlying physics, we may
expect that it corresponds to a general result in thermodynamics; it suggests
that a definition of entropy in terms of order in spacetime might be more general
than the Boltzmann definition related to a counting of microstates. All these
results based on the fact that the paths introduced in the path-integral formalism
have a physical meaning give a new approach of statistical mechanics. Finally,
we compare our approach to other works based on a similar starting point.

PACS numbers: 03.65.Ca, 05.30.−d, 05.70.−a, 47.53.+n

1. Introduction

After the discovery of the Hawking radiation [1], it became clear that the similarity observed
by Bekenstein [2] between the four laws of black hole mechanics and the ones of standard
thermodynamics is much more than a simple analogy but represents a result having a deep
significance. For a given black hole, the same values for temperature, TBH, and entropy, SBH,
have been obtained from different approaches. Consequently, we may consider the black hole
thermodynamics as firmly established; one exception, may be, concerns the derivation of the
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second law of thermodynamics that is replaced by the so-called generalized second law [3].
The main question emerging from these results is relative to the physical origin of the black
hole entropy. It is implicitly assumed that the physical content of SBH can be understood, at
least to some extent, from the usual ingredients of classical physics. This leads to search a
relation between SBH and a counting of microstates. After 30 years of intensive works in that
direction, we have still to deal with questions relative to the nature and the location in space
of these microstates [4, 5].

In this paper we reverse this problematic. We do not try to understand something
concerning the black hole physics starting from the results obtained in ordinary physics but
we try to see if it is possible to learn something about ordinary systems starting from results
obtained in the domain of black holes. By ordinary systems, we mean those for which a pre-
relativistic description is sufficient. Obviously, we cannot expect a strict mapping between
the thermodynamic properties of ordinary systems and those of systems including black holes
for which there are fundamental singularities, the presence of horizons and the existence of a
holographic principle. Nevertheless, as we shall see, it is possible to reformulate some results
obtained in the black hole domain in a so general manner that it appears natural to ask whether
there exists similar results in the case of ordinary systems.

It is well known that the Hawking temperature, TH , of a Schwarzschild black hole of
mass M measured at a large distance from the hole is given by TH = h̄

8πM
. In the original

derivation of this result, Hawking [1] used techniques of quantum field theory on a given
classical curved background spacetime. For this purpose, it was useful to work in the ‘real
Euclidean section’ of the Schwarzschild geometry, in which the time is rotated to its imaginary
value and the thermal Green function is periodic with a period βh̄ = h̄

kBTH
(see for instance

[6] for a mathematical analysis of this result). Later, Gibbons and Hawking [7] were able
to deduce thermodynamics of black hole from statistical mechanics. The main steps in their
derivation are the following. First, they started from the existence of a partition function, ZGH,
defined according to

ZGH =
∫

D[g] exp − 1

h̄
AE[g] (1)

in which AE[g] is the Euclidean action of the gravitational field associated with the metric g

and D[g] means that we have to perform a functional integration over all the possible metrics.
In (1), the action is defined on a time interval βh̄ = h̄

kBTH
. Then, they performed a zero

loop approximation from which the free energy defined by FGH = −kBTH ln ZGH is directly
proportional to the action. Finally, the entropy was deduced from FGH by using the usual
thermodynamic relations. For four different metrics, it has been shown that the results derived
in this way agree with previous derivations although the methods are totally different. Thus,
the entropy derived from the spacetime properties has a geometrical origin connected with the
spacetime metrics, it is not based explicitly on the counting of microstates.

It is tempting to retain from these results some general aspects that we may try to extend
to ordinary systems. First, in parallel to the usual definition of entropy it might exist an
alternative definition connected with the geometry of spacetime and that we might establish
without explicit reference with a counting of microstates. In what follows, we shall see that
such an alternative definition of entropy also exists for ordinary systems provided a spacetime
model is introduced [8]. Second, black hole theory suggests the existence of a relation between
action and spacetime free energy leading to a relation between action and entropy. Hereafter,
we deduce an identical relation valid for ordinary systems. For the simple case considered
here, the result is quite general, i.e., it is not restricted to the zero loop approximation. It is
noteworthy that the existence of a relation between action and entropy has been suggested by



Entropy: from black holes to ordinary systems 7177

Eddington a long time ago and reinvestigated later by de Broglie searching a relation between
two quantities that are considered as relativistic invariants in restricted relativity (for a review
in this domain see [9]).

This paper is organized as follows. In section 2, we introduce a spacetime model similar
to the one presented in [8]. In section 3, we define the path entropy. In section 4, we analyse
the relation time/temperature from which we establish a link between our spacetime approach
and ordinary thermodynamics; a new heuristic approach of this relation is given. In section 5,
we derive the relation between action and entropy. In section 6, we compare some points of
our approach with recent works starting from a similar basis. In the last section we give some
concluding remarks.

2. Spacetime model

In his book with Hibbs, Feynman [10] developed a given number of fundamental remarks
concerning the derivation of the partition function in terms of path integral. He suggested
a possible new foundation of statistical mechanics directly in terms of path integral as he
did for the amplitude of probability in quantum mechanics; in this context, ‘directly’ means
without using the Schrödinger equation. This Feynman’s conjecture implies to give a physical
meaning to the paths. Excepted in a few number of attempts (see section discussion), the
paths are considered as a mathematical trick without any connection with a real motion in
spacetime. To give a physical meaning to the paths, we may reconsider our knowledge about
the structure of spacetime.

Today there are many indications showing that spacetime may be discrete rather
continuous (see for instance [11] and the references quoted therein). In the light of recent
works, it is clear that the discretization of spacetime appears as natural when a minimal length
exists. However, this discretization is much more than the reduction of usual continuous
equations to their discrete forms, it leads to a drastic change in our description of the
microscopic world. This can be illustrated starting from the seminal paper of Snyder [12] in
which it has been shown that the presence of the Compton wavelength, λC , does not destroy
the Lorentz invariance of spacetime provided we change the standard commutations rules
of quantum mechanics. Now, the position operators relative to two different orientations do
not commute anymore; this leads to introduce a non-commutative geometry from which it is
possible to immediately recover the Dirac equation [13]. The spectrum of position operators
consists of values such as mλC where m is an integer. λC represents the best accuracy with
which we can localize a particle: for distances smaller than λC a multiparticle theory is needed.

A similar situation appears in the domain of quantum gravitation where it has been shown
that for distances shorter than the Planck length, λP , the concept of spacetime loses its meaning
[14]. New commutations rules are established using string theory or a heuristic combination
of quantum mechanics and standard general relativity (see for instance [15]). From the
new commutations rules, it is possible to establish an algebra for operators also leading to
a non-commutative geometry. Recent papers analyse the algebraic structures related to this
generalized uncertainty principle.

Another approach developed in relation with quantum gravity is the causal set theory in
which we combine spacetime discreetness and causality (for an introduction in this domain
see [16, 17]). Here, causality appears as a fundamental organizing principle, spacetime is
replaced by an assembly of discrete elements organized by means of relations between them
into a partially ordered set. To build up a causal set theory, it is natural to assume that the
discrete spacetime has a deep structure containing some ingredients that are already familiar to
us from our study of the world at a larger scale. This represents a new kind of correspondence
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principle between a discrete spacetime and its continuous limit. Quite naturally causal set
theory leads to consider random walks and to wonder about the existence of a quantum
stochastic process that should lead to the Schrödinger equation in a continuous limit [18].

For the problem that we have in mind, i.e., to establish a relation between action and
entropy in the case of ordinary (pre-relativistic) systems a simple model of spacetime can
be used, as we shall see the one introduced in [8] is sufficient. Hereafter, we will briefly
summarize the main points of this model. We assume that the spacetime points (ti , xi) are
located on the sites of a regular lattice as in the chessboard model investigated in [10]. The
spacetime structure is characterized by the existence of a relation between the elementary
length �x and time interval �t corresponding to the lattice spacing. We assume that the free
motion in this spacetime is as simple as possible. By definition, a path corresponds to a set of
sites (ti , xi); the values of ti are such as ti+1 > ti whatever i and the coordinate positions, xi+1

is necessarily one of the nearest neighbours of xi , thus a path corresponds to a random walk.
In this spacetime model we have a discrete manifold, the quantification appears via the

relation between �x and �t and the kinematics is defined in terms of paths on which a causal
relation exists. In this model there is no metric but a causal structure as in the theory of causal
sets [16, 17]. When a mass is introduced in this lattice, we assume that (�x)2/�t = h̄/m, a
relation mimicking the Heisenberg uncertainty relations [8]. Note that this relation does not
fix the values of �x and �t . In the absence of gravity and if we assume that the velocity of
light is infinite both the Planck and the Compton lengths vanish, then there is no natural unit of
length. Therefore, we may extend the previous relation in the limits �x,�t → 0. The initial
discreetness persists because these limits are taken with the constraint (�x)2/�t = h̄/m. This
leads to a continuous diffusion process [19] for which the diffusion coefficient is D = h̄/2m.
For this diffusion process we note q0(t0, x0; t, x) the density of transition probability to go
from (t0, x0) to (t, x) when t � t0. From q0(t0, x0; t, x) and a function φ0(x) defined for
t = t0, we form the function φ(t, x) according to

φ(t, x) =
∫

φ0(y)q0(t0, y; t, x) dy (2)

which is the solution of the diffusion equation

−∂φ(t, x)/∂t + D�xφ(t, x) = 0 (3)

verifying the initial-value problem φ(t0, x) = φ0(x). Note that q0(t0, x0; t, x) is the
fundamental solution of (3) in which �x is the Laplacian operator taken at the point x.

In the presence of an external potential, u(t, x), we generalize (3) into

−∂φ(t, x)/∂t + D�φ(t, x) − 1

h̄
u(t, x)φ(t, x) = 0. (4)

In contrast to (3), the fundamental solution of (4), q(t0, x0; t, x), cannot be normalized
in general [20]. Thus, q(t0, x0; t, x) is no more a transition probability density but it
verifies the Chapman–Kolmogorov law of composition [20] and therefore it can be used to
describe transitions in spacetime. Using the Feynman–Kac formula, the fundamental solution,
q(t0, x0; t, x), of this new equation appears as a weighted sum of all the paths connecting the
spacetime points (x0, t0) to (x, t); we have

q(t0, x0; t, x) =
∫

Dx(t) exp − 1

h̄
AE[x(t); t, t0] (5)

where Dx(t) means the measure for the functional integral and

AE[x(t); t, t0] =
∫ t

t0

[
1

2
m

[
dx(t ′)

dt ′

]2

+ u(t ′, x(t ′))

]
dt ′. (6)
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From (5), (6) and a given function φ0(x), we may construct the solution of (4) verifying the
initial condition φ(t0, x) = φ0(x) by changing q0(t0, x0; t, x) into q(t0, x0; t, x) in (2).

At this level, it is important to underline that the paths are associated with processes that
occur in real time. These processes are generated from the Euclidean action AE[x(t); t, t0]
and they are such that, in average, there is no derivative, i.e., no velocity in the usual sense on
the paths [21]. In what follows, we will show that the function q(t0, x0; t, x) is sufficient to
give a description of the order in spacetime.

3. Path entropy

To define the order—or disorder—in spacetime, we first adopt a local definition. Around a
point x0, we count the number of closed paths that we can form during a given time interval
τ . If there is only one possible path we can say that we have a perfect order, no fluctuation
around this path is accepted. However, after introducing a given measure, some fluctuations
can take place and we have to deal with a given number of acceptable paths. For this measure,
we associate the order in spacetime with this number of paths. The total order in our system
will be obtained by summing the result of this procedure on all the points xi . This definition
seems quite natural anytime we have to deal with processes occurring in a given spacetime.
Of course, such a definition is not unique but it is probably the simplest one.

By analogy with the thermodynamic entropy, which is defined for given values of internal
energy and volume, we consider that our spacetime system is prepared with a given energy U
and filled with a volume V . We define a path entropy by counting the number of paths for
which the Euclidean action that we note hereafter as AE[x(t); τ ] does not deviate too much
from the action τU . In reference with the standard thermodynamics, we define a path entropy,
Spath, according to

Spath = kB ln
∫

dx0

∫
Dx(t) exp − 1

h̄
[AE[x(t); τ ] − τU ]. (7)

Spath can be also rewritten as

Spath = kBτ

h̄
U + kB ln Zpath (8)

with

Zpath =
∫

dx0

∫
Dx(t) exp − 1

h̄
AE[x(t); τ ] =

∫
dx0 q(0, x0; τ, x0) (9)

in which q(0, x0; τ, x0) corresponds to closed paths observed during a time interval τ and for
which t0 = 0. Zpath is the total number of closed paths that we may count during τ irrespective
the value of U. Spath contains two external parameters τ and U while Zpath is only function of
τ . We may characterize the dependence of Spath versus these two parameters by considering

the two derivatives: dSpath

dU
defined as 1

Tpath
and dSpath

dτ
. From the results given in [8], we have

h̄

kB

dSpath

dU
= h̄

kB

1

Tpath
= τ + [U − (〈uK〉path + 〈uP 〉path)]

dτ

dU
(10)

and
h̄

kB

dSpath

dτ
= [U − (〈uK〉path + 〈uP 〉path)] + τ

dU

dτ
(11)

in which a relation between U and τ is assumed. The averages over paths that appear in (10)
and (11) are defined according to

〈uP 〉path = 1

Zpath

∫
dx0 u(x0)q(0, x0; τ, x0) (12)
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and

m

2

〈(
δx

δt

)2
〉

path

= h̄

2δt
− 〈uK〉path (13)

in which 〈uK〉path is a well-behaved function in the limit δt → 0; moreover we have checked
on examples that 〈uK〉path is just the usual thermal kinetic energy [8].

The quantities, Spath, Zpath, Tpath and dSpath

dτ
are well-defined, they gives us a global

characteristic of the spacetime structure but none of them corresponds to a thermodynamic
quantity. In the next section, we show that there is a value of τ for which a correspondence
can be established between these quantities and thermodynamic properties.

4. Relation between time and temperature

In (10), the sum 〈uK〉path + 〈uP 〉path is a well-defined quantity depending on the parameter τ

and we may choose a particular value of τ in such a way that the previous sum coincides with
U. This choice corresponds to a condition of thermal equilibrium, the energy that we spent on
the paths corresponds to the energy of system formation, i.e., U. Now from (10) we conclude
that the relation between τ and the temperature Tpath is τ = h̄

kBTpath
whatever the value of dτ

dU

and whatever the potential u(x). If we identify Tpath with the usual temperature, we can see
that Zpath defined in (9) becomes

Z =
∫

dx0

∫
Dx(t) exp − 1

h̄

∫ βh̄

0

[
1

2
m

[
dx(t ′)

dt ′

]2

+ u(x(t ′))

]
dt ′ (14)

which is identical to the traditional partition function expressed in terms of path integral [10]
and thus we may recover all the results of thermodynamics. It is quite simple to verify that
(11) is now reduced to h̄

kB

dSpath

dτ
= τ dU

dτ
that we can rewrite as dU = T dS. Here, we may

interpret this relation as follows: if we increase the energy U for the system preparation we
increase the number of paths available and therefore the entropy in spacetime. It can be shown
that τ also corresponds to the time interval that we have to wait in order to relax the quantum
fluctuations and to reach a thermal regime [22].

Finally, we may also derive the relation τ = βh̄ from the following heuristic argument.
From standard thermodynamics we know that if a change of energy �U produces on a moving
body a change of momentum �P , the corresponding change of entropy �S is given by [23]

�S = 1

T
�U −

(
V

T

)
�P (15)

in which V is the velocity of the mobile. From (15) we may learn two different kinds of results.
First, in terms of variations we may assume that �U results from quantum fluctuations and its
estimation is �U = h̄

2τ
while the dynamic part can be written as �

(
1
2mV 2

)
and if we assume

that the quantum fluctuations lead to the thermal equilibrium we have �
(

1
2mV 2

) = 1
2β

. Since
the system is at equilibrium, we must have no net change of entropy during these fluctuations;
we can see that �S = 0 implies τ = βh̄. Second, relation (15) is adequate for an interpretation
in the domain of restricted relativity. Since the entropy is considered as a relativistic invariant,
the right-hand side of equation (15) must be relativistic invariant [23]. It appears as the
scalar product of the energy momentum tensor by a quantity

(
1
T
,
(

V
T

))
that must be a 4-vector

showing that
(

1
T

)
must behave as a time in a Lorentz transformation. This result, added to

others developed in [8], supports the idea that it exists a fundamental relation between time
and the reverse of temperature.
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The relation τ = βh̄ is extensively used in the derivation of the black hole properties
but it appears more as a mathematical trick than a relation having a strong physical basis. A
simple way to justify the value of τ has been proposed by Hawking starting from the analogy
between the calculation of (1) and the usual method of quantum field theory [24]. Since the
Euclidean action for the gravitational field and the thermal Green functions are periodic in
imaginary time [6], it seems logical to identify the two periods. This leads to introduce a time
and its relation with the temperature. What is behind this identification is not totally clear
nevertheless τ is considered as a real time. This is quite clear in a paper of Padmanabhan [25]
devoted to systems with a horizon. In this case, the gravitational action is calculated in real
time, then the value of τ appears as an extra hypothesis.

In our derivation of the relation τ = βh̄, we do not use the Schrödinger equation or
the canonical form of the density matrix that is needed to find the properties of the Green
function. We consider an equilibrium condition and what we need from quantum mechanics is
the existence of a relation that mimics the Heisenberg uncertainty relation. This is reminiscent
of a strong result obtained by Wald [3] showing that it is possible to derive some properties of
black hole without using the detailed expression of the Einstein equation.

From all arguments developed above, it seems normal to conclude that the relation τ = βh̄

has a very general and deep physical meaning.

5. Relation between action and entropy

In the Gibbs ensemble approach of statistical mechanics, we cannot expect a relation between
action and entropy because these two quantities have a different nature: entropy is considered
as an equilibrium quantity that we have to calculate by integration over the phase space
while the action is a dynamical quantity and its definition requires the introduction of a time
interval. In the previous section, we have developed a dynamical approach of thermodynamic
equilibrium in which a time interval τ is associated with the reverse of the temperature. We
have shown that the free energy defined according to F = −kBT ln Z is a functional of an
Euclidean action AE[x(t); t, t0]. Before setting up a relation between action and entropy, we
analyse the relation between the Lagrangian and Euclidean version of the action.

In (12) we have defined a potential energy 〈uP 〉path by an average over paths and the mean

value of the kinetic energy over paths will be defined by m
2

〈(
δx
δt

)2〉
path that we have introduced

in (13). As usually we may define a Lagrangian by the difference between kinetic and potential
energies. For a given temperature T, the average over the paths of this Lagrangian 〈L(T )〉 is
given by

〈L(T )〉 =

m

2

〈(
δx

δt

)2
〉

path

− 〈uP 〉path


 = h̄

2δt
− [〈uK〉path + 〈uP 〉path] = h̄

2δt
− U. (16)

The second equality results from (13) and the third is the consequence of the equilibrium
condition discussed in the previous section. Thus, from (16) we can see that 〈L(T )〉 is ill
defined if the time interval δt on which we calculate the kinetic energy goes to zero. Instead
of 〈L(T )〉, we introduce the product

〈A(T , δt)〉 = 〈L(T )〉δt = h̄

2
− Uδt (17)

that is a well-defined quantity whatever the value of δt . We may consider 〈A(T , δt)〉 as the
elementary Lagrangian action over the paths. In the limit δt → 0, we see that 〈A(T , δt)〉
corresponds to the quantum of action. In (17), Uδt represents an Euclidean action since it
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contains the sum of the kinetic and potential energies. Thus, (17) gives the relation between
the Lagrangian and the Euclidean actions in our spacetime model. For a fixed value of δt ,
these two actions vary with opposite sign. If we increase the temperature by δT , we have

〈A(T + δT , δt)〉 − 〈A(T , δt)〉 = −δt[U(T + δT ) − U(T )] = −δtT δS (18)

in which the last equality is a consequence of the usual thermodynamic relation. The net
change of action δA on the time interval τ will be obtained by summing up [〈A(T + δT , δt)〉−
〈A(T , δt)〉] on all the elementary time interval covering the total time interval τ . In the last
part of (18), this will be simply done by multiplying the previous result by the number of
elementary steps, i.e., τ

δt
. It is easy to see that the final result can be written as

δA

h̄
= −δS

kB

. (19)

This is an important result of this paper. It has been established for ordinary systems and
shows that a change of entropy is equivalent to a change in the mean value of action calculated
over the paths. Note that the existence of such a relation has been suspected by de Broglie
[9] using relativistic arguments. For a black hole having an area A, the entropy is given
by S = kBc3

4Gh̄
A and the Euclidean action is AE = − c3

4G
A leading to the relation S

kB
= −AE

h̄

from which we immediately get (19) provided we identify the change δA with δAE . This
identification is justified by the fact that the Euclidean action in classical mechanics and in
quantum field theory is defined with an opposite sign (see for instance [26]). It is important
to underline that (19) results from a zero loop approximation in the case of black hole while
we have an exact derivation here. It is also interesting to note that (19) is verified for systems
with very different underlying physics; in the case of ordinary systems, the Euclidean action
is given by (6) while in the case of black hole the action is the gravitational one. This fits
quite well with the spirit of thermodynamics and we may think that (19) represents a very
general result.

6. Discussion

Entropy is a fundamental quantity in physics and the law of evolution of entropy may be
considered as the actual law of system evolution [27]. Recently, assuming the proportionality
between entropy and horizon area for all local accelerated horizons, Jacobson [28] derived the
Einstein equations as an equilibrium equation of state. For these reasons, it seems interesting
to focus first on statistical mechanics considered as a good representation of thermodynamics
and later to derive a Schrödinger equation as we have done in [8]. This leads to reverse the
traditional route beginning with the Schrödinger equation and ending with the expression of the
partition function via the use of the canonical form for the density matrix. The route we follow
is also in the spirit of standard thermodynamics in which it is claimed that physical processes
are basically irreversible but that we may create some reversible processes by imposing a
symmetry between initial and final states [29]. This approach forces us to carefully analyse
the problem of time irreversibility. In statistical mechanics, the motion over the paths is
characterized by a positive semi-group from which we have derived a like H-theorem [8].
However, if we force the system to have a time-reversible behaviour then, as shown in [8], we
may recover a Schrödinger equation using some mathematical results established by Nagasawa
[20, 30]. Now, instead of a positive semi-group we have to deal with an unitary group.

It is important to note that our work is based on the diffusion equation in an external
field (4) that it is not a Fokker–Planck equation and its solution is not a density of probability.
Thus, our definition of entropy is not related to the existence of a Markovian process.
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In order to derive a Schrödinger equation from this kind of approach, we have to consider
two diffusion equations like (4) in duality relative to a given measure as shown in [20]. Then,
in addition to φ(t, x) we have to consider a second function φ̂(t, x) and two times t0 and
t1 for which two boundaries conditions are fixed independently for φ(t, x) and φ̂(t, x). The
Schrödinger equation works for t0 � t � t1. Clearly, in statistical physics or in quantum
mechanics we have not to deal with the simple Markovian process analysed in [31] and the
results obtained in [31] or in [32] are irrelevant here. Our approach is not based on the
so-called stochastic mechanics. If for practical reasons we know the density of probability
φ(t, x)φ̂(t, x) at a time t0 or t1, it may be difficult to know the functions φ(t0, x) and φ(t1, x)

and to describe the physics in terms of these functions. Fortunately, in this practical case
we may use a reverse theorem established by Nagasawa [20] showing that the Schrödinger
equation implies the existence of two diffusion equations in duality. By using this theorem,
we may determine for instance what kind of potential u(t, x) in spacetime may generate a
Gaussian wavepacket for free particles [33].

In the continuous limit, our primarily discrete spacetime leads to (3) in the case of free
particles therefore it should be possible to start our derivation of statistical mechanics directly
from this diffusion equation. In our approach, we do not explain why the diffusion plays a
preeminent role but we show that this equation may appear from general schemes used in
other domains of quantum physics as those exposed in section 2. From them we can see that a
natural extension of our work should consist in introducing new uncertainty relations related
to the new commutations rules as those introduced in the paper of Snyder [12] and leading to
a non-commutative geometry.

We may also note that our spacetime model is well defined since we give a clear answer
to the following dilemma [34]: is the geometry of the underlying spacetime fractal or is the
underlying spacetime regular and the fractal character generated by the dynamics? Here, we
show that for the problems under consideration the second assumption is sufficient. There
is no need to introduce a fractal spacetime as suggested in [35, 36]. However, if there is
conceptual differences between our work and those based on a fractal spacetime, there also
exists some similarities. This can be illustrated by considering a recent publication of Nottale
et al [37]. These authors do not use a Fokker–Planck equation and their results, as ours, are
not related to stochastic mechanics. The existence of two values for the velocity is a key
concept in [37] and in [8] it was crucial to understand a H-theorem. An interesting aspect of
their work is a discussion about the transition between quantum and classical physics in their
scale relativity. This transition is governed by a characteristic time that they identify with the
Einstein–de Broglie scale of the system, i.e., h̄

E
in which E is a characteristic energy. In our

approach if we associate E with the thermal energy we find that this characteristic time is τ , a
meaningful result since we have seen that τ is the time interval separating a quantum domain
from a thermodynamical one. Also note that it cannot be totally excluded that a connection
between the non-commutative geometry mentioned above and some kind of fractality might
exist [38].

Our work is based on two points. First, we want to describe statistical mechanics and then
quantum physics at the level of the Schrödinger equation; this order leads to introduce a simple
model of spacetime and kinematics. Second, we give a physical meaning to the paths. This
is not a new idea and there is several attempts in which the paths are considered as physical
entities. In this domain, the work of Nelson [39] represents an important step; in this approach
the diffusion coefficient is the same as the one used in this paper. However, as mentioned
above our work is not based on stochastic mechanics. Ancient works in which a physical
meaning has been associated with the paths have been summarized in [30]. Very recent and
new attempts in this field are due to Ord (see for instance [40, 41]) who tries to recover the
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properties of the wavefunction using only ensembles of classical point particles moving on
continuous trajectories in spacetime. From this point of view, it was possible to derive the
Schrödinger and the Dirac equations. In the papers of Ord, the role of time irreversibility is
carefully analysed and the reversibility of the Schrödinger equation is obtained by considering
more information on the paths but selecting a special projection of the processes that appears
as time reversible. The final version of this approach leads to the concept of entwined paths
[42]. It should be interesting to analyse the predictions of such an approach in the domain of
statistical physics.

7. Concluding remarks

Starting from a dynamical point of view in which we give a physical meaning to the paths, we
rederive the standard results of equilibrium thermodynamics as shown by (14). To describe
the thermal equilibrium, the paths are investigated on a time τ = βh̄ which is related to an
equilibrium condition. The entropy is defined in terms of order in a given spacetime. For
ordinary systems, this definition and Boltzmann definition lead to the same value for the
entropy. A relation between action and entropy has been established, it is identical to the one
existing for black holes although the underlying physics is very different of the one existing
for ordinary systems.

Recent results show that, possibly, the concept of entropy is far to be well understood
[3, 43]. This is the case in the black hole domain in which we are not able to associate the
entropy with a counting of microstates. In addition, as a consequence of the so-called Unruh
effect [43], it appears that the number of microstates might be related to the motion of the
observer and, as a consequence, the Boltzmann entropy should lose its fundamental character.
This suggests that a definition of entropy more general that the one introduced by Boltzmann
might exist. This paper is an attempt to introduce a new definition of entropy that we can use
both for ordinary systems and systems including black hole. It is also an illustration showing
that general results obtained in the domain of black hole can be extended to ordinary systems
producing an improvement in our general understanding about thermodynamics.
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